

EDDY CURRENT FLAW DETECTOR

WFIDCHECK2 & WFIDCHECK EDDY CURRENT FLAW DETECTOR

SIGMACHECK EDDY CURRENT CONDUCTIVITY METER

CURRENT FLAW DETECTOR

VEESCAN EDDY CURRENT AIRCRAF WHEEL INSPECTION SYSTEM

USEFUL TECHNICAL INFORMATION CONCERNING EDDY CURRENT NDT

OHMS LAW

Where V = Voltage in volts, I = Current in Amps and R = Resistance in Ohms $V = I \times R$ **IMPEDANCE**

 $Z = \sqrt{R^2 + X_L^2}$ Where Z = Impedance in ohms, R = Resistance in ohms and XL = Reactance in ohms.

PHASE ANGLE

 $Tan\phi = \frac{X_{L}}{R}$

Where ϕ = Phase Angle in degrees, X_L = Inductive Reactance in ohms and R = Resistance in ohms.

MAGNETIC PERMEABILITY

 $\mu = \frac{B}{H}$

 $\mu_r = -\frac{\mu}{2}$ μ_{o}

 $R = \frac{\rho l}{A}$

Where μ = Magnetic Permeability in Henries per meter (mu), B = Magnetic Flux Density in Tesla, H = Magnetising Force in Amps/meter.

RELATIVE MAGNETIC PERMEABILITY

$$\mu_r$$
 = Relative magnetic permeability (mu) = 1 if the material is non-ferrous.

$$\mu_o$$
 = Magnetic permeability of free space (Henries per meter = 1.257 * 10⁻⁶)

 μ = Magnetic permeability (Henries per meter) = $\mu_r * \mu_o$

CONDUCTIVITY AND RESISTIVITY

Conductivity can be measured in Siemens per m (S/m) or more commonly in $\sigma = \frac{1}{2}$ Aerospace NDT in % IACS (International Annealed Copper Standard). 1 Siemen is the inverse of an ohm. Another common measurement unit is Siemen per cm (S/cm). 100S/m=1S/cm and 100%IACS = 58 *10⁶ S/m = 58 MS/m = 0.58 MS/cm. σ = Conductivity (sigma) ρ = Resistivity (rho)

RESISTANCE AND CONDUCTIVITY

 $R = -\frac{l}{l}$ Where R = the resistance of a uniform cross section conductor in ohms (Ω), l= the length of the conductor in the same linear units as the conductivity or resistivity is $A\sigma$ measured in e.g.

S/m or ohm.m, A = Cross Sectional area, = conductivity S/m and = Resistivity (Ω m)

STANDARD DEPTH OF PENETRATION

$$\delta = \frac{1}{\sqrt{2\pi\mu\sigma}} \qquad \begin{array}{l} \delta = \text{standard de} \\ \pi = \text{pi (3.1415)} \end{array}$$

f =frequency (Hz)

- μ = Magnetic Permeability (Henries per meter). As =1 for non-ferrous material then = 4 * 10 - 7 = $1.257 * 10^{-6}$
- σ = Conductivity (Siemens/metre)

DEPTH OF PENETRATION

 $\sqrt{\frac{4^2}{D^2}+2\pi f\mu\sigma}$

AND PROBE SIZE

 $\delta = 0$

SOME CONVERSION FACTORS

1m = 100 cm = 1000 mm 1inch = 2.54 cm 1% IACS = 0.58MS/m = 5,800S/cm 1 Siemen = $\frac{1}{2}$

FREQUENCY CALCULATIONS

Wall Thickness equals skin depth:

$$f = 1$$
 $f = frequency (Hz)$

 $x^2 \pi \mu \sigma$ π = material thickness in meters

 μ = Magnetic Permeability (Henries per meter). As μ_r = 1 for non-ferrous material then = 1.257 *10-6

 σ = Conductivity (Siemens/metre)

Frequency for Wobble v thickness Change = 90 degrees	$f = \frac{0.64}{x^2 \pi \mu \sigma}$
Frequency for ID to OD = 90 degrees	$f = \frac{1.2}{x^2 \pi \mu \sigma}$
Frequency for Through Wall to OD 20 % =120 degrees	$f = \frac{2.56}{x^2 \pi \mu \sigma}$
End Point 3 skin depths	$f = \frac{9}{x^2 \pi \mu \sigma}$

Knee point (point where optimum phase shift for surface breaking defect to lift off achieved):

 $f = \frac{9*10^{11}}{\sigma}$

SHORT FORM CONDUCTIVITY LIST

Types and/ or Description	Conductivity % IACS	Mega Siemen per m (MSm-1)	Types and/ or Description	Conductivity % IACS	Mega Siemen per m (MSm-1)
Aluminium			Miscellaneous		
Pure Aluminium (A1)	65.86%	38.20	Brass 95% Cu + 5% Zn	55.00%	31.9
Aluminium Alloy 1100-0	59.45%	34.48	95.7% Cu + 4.3% Ti	10.00%	5.8
Aluminium Alloy 2024-0	50.71%	29.41	Admiralty Brass 70%		
Aluminium Alloy 2024-T4	30.25%	17.55	Cu + 29% Zn + 1% Sn	2.50%	1.45
Aluminium Alloy 7075-T6	33.16%	19.23	Alpha Alloy (Ti)		
Aluminium Alloy 355.0-T6	27.81%	16.13	+ 5% Al + 2.5% Sn	1.10%	0.64
Aluminium Alloy 356.0-T6	25.35%	14.70	Alpha-Beta Alloy (Ti)		
Nickel and Alloys			+ 6% Al + 4% V	1.01%	0.59
Nickel - (Pure) (Ni)	25.00%	14.50	Alpha-Ti	3.20%	1.86
Monel K-500	2.83%	1.64	Aluminium Brass BSTF3	23.00%	13.34
Hastelloy B	1.28%	0.74	Aluminium Brass Type B	15.50%	8.99
Inconel 600	1.67%	0.97	ASTM Bill/71 Alloy 715		
Inconel 625	1.34%	0.78	(70/30 Cu/Ni)	5.00%	2.9
Inconel X-750	1.41%	0.82	ASTM Bill/F1 Alloy 443		
Inconel 800	1.74%	1.01	(70/30 Cu/Zn) with 1% Sn	25.00%	14.5
Nichrome -			Barium (Ba)	2.76%	1.6
Ni 61%, Cr 15%, Fe 24%	1.54%	0.89	Beryllium (Be)	38.50%	22.33
Nichrome V -			Beta Alloy (Ti)	1.20%	0.7
Ni 80% + 20% Cr	1.60%	0.93	Brass 70% Cu + 30% Zn	28.00%	16.24
Stainless Steels			Brass 85% Cu + 15% Zn	37.00%	21.46
Stainless Steel Type 420	3.13%	1.82	Brass 97.5% Cu + 2.5% Ti	15.00%	8.7
Stainless Steel			Bronze 88% Cu + 12% Sn	9.70%	5.63
Type 403, 410 & 416	3.02%	1.75	C36000 (Free Cutting Brass)	26.00%	15.08
Stainless Steel			C70690 90% Cu + 10% Ni	11.90%	6.9
Type 430, 430-F, 434 & 436	2.87%	1.66	C71590 70% Cu + 30% Ni	5.00%	2.9
Stainless Steel			C83600 (Red Brass) 0.85%		
Type 405 & 409	2.83%	1.64	Cu; 5% Zn; 5% Sn; 5% Pb	15.00%	8.7
Stainless Steel Type 442	2.69%	1.56	C85200 (Yellow Brass)	18.00%	10.44
Stainless Steel Type 446	2.57%	1.49	C86200 (Manganese Bronze)	7.50%	4.35
Stainless Steel			C92200 (Navy 'M' Bronze)	14.30%	8.29
Type 201 & 202	2.50%	1.45	C93200 (Bearing-Bronze)	12.00%	6.96
Stainless Steel			C95400 (Aluminium-Bronze)	13.00%	7.54
Type 304 & 304L	2.46%	1.43	Cadmium (Cd) (Pure)	25.17%	14.6
Stainless Steel Type 321	2.43%	1.41	Calcium (Ca)	37.60%	21.81
S/S Type 301,302, 302-B, 303,			Carbon (Pure)	0.12%	0.07
305, 308, 347, 414 & 431	2.39%	1.39	Chromium (Cr)	13.45%	7.8
Stainless Steel			Cobalt (Co) (99.8% Pure)	17.80%	10.32
Type 316, 316L & 317	2.33%	1.35	Cobalt (Co) (Pure)	27.60%	16.01
S/St Type 2522 (V/soft nr			Gold (Au) 99.9% Pure	77.60%	45.01
1.4466) Similar to 316	1.01%	0.59	Graphite with Elemental		
Stainless Steel Type 309	2.21%	1.28	Carbon - Plain	0.03%	0.02
Stainless Steel Type 310	2.18%	1.26	Lithium (Li)	19.40%	11.25
Copper			Magnesium (Mg) (Pure)	38.60%	22.39
99.995% Min (Vacuum			Manganese (Mn)	9.30%	5.39
Cast Pure Copper) (Cu)	102.00%	59.16	Mg Alloy AZ91B-F	13.36%	7.75
Phosphorized Arsenical			Mg Alloy ZK60A-T5	30.25%	17.55
Copper	45.00%	26.1	Molybodenum (Annealed)	41.00%	23.78
Cu + 0.03 to 0.06% Mg; +0.08			Pure Lead (Pb)	7.93%	4.6
to 0.15% Zr; 0.40 to 0.80% Cr	85.00%	49.3			
Cu +0.7 to 1.2% Cr	82.00%	47.56	Any ques	stions?	

FTI-200 ADVANCED EDDY

Influence of Frequency and Conductivity on Standard Depth of Penetration

CURRENT DENSITY CHANGE WITH DEPTH

$$J_x = J_0 e^{\frac{-x}{\delta}}$$

- J_x = Current Density at distance x below the surface (amps/m2)
- J_0 = Current Density at the surface (amps/m2)
- e = the base of the natural logarithm (Euler's number) = 2.71828
- x = Distance below the surface
- δ = Standard depth of penetration

PHASE CHANGE WITH DEPTH

$$\theta = \frac{57.3x}{\delta}$$

- θ = Phase lag (degrees) 57.3 = 1 radian expressed in degrees
- x = Distance below the surface
- δ = Standard depth of penetration

How Phase and Current Desity change with Depth of Penetration

Cu +2.0% Ni + 1.0% Ti 60.00% 34.8 Cu +5.0% Ni + 2.5% Ti 55.00% 31.9 C10300 +0.001 to 0.005% P 98.20% 56.96

Email us at sales@ethernde.com and we will be happy to assist you.

ETher NDE, Endeavour House, 18 Brick Knoll Park, Ashley Road, St. Albans, AL1 5UG, UK.

Email: sales@ethernde.com Tel: +44 (0)1727 648050

96.00%

55.68

C14700 +0.3% S

ethernde.com